
Scripti ng fundamentals – saving your sanity

Commenti ng

Aft er you write your fi rst line of code, you'll probably noti ce that it's not normal english as we are accustomed to
seeing it.

int i = 5;
Print(“i is ” + i);

This doesn't tell us very much, and it certainly doesn't
set up any sort of context for what it does. I can think
'This doesn't bother me, i know what it does, i just wrote
it', but I have lost staring matches with gnats, and by
the ti me I've fi nished my cup of coff ee I've probably
forgott en what it does. This is prett y bad, but not the
end of the world, aft er all, i wrote it, so i should be able
to decipher what it does, but it gets really bad when
you are working with... (pause for dramati c eff ect)...

other people! It took me a long ti me to realise that other
people can't tell what I'm thinking (probably to their
advantage most to the ti me) and you've probably come
to the same conclusion. The way to get around that
problem is to write comments in english (or whatever
language you feel most comfortable with) that you can
scan through and fi n out what the program does before
you actually launch into trying to read the code.

You might feel like this is a total waste of ti me when you
are writi ng it, but if you come back to your cat counti ng
program aft er a few months, then if there are no
comments then it will be almost impossible to read.
Imagine you are a modern day Geppett o, and you
make electrical toys. If you didn't make a note of what
coloured wires did what, then when you came to fi x a
toy then it would look like a multi coloured pot noodle
inside!

int i = 5; //i is the number of cats in the room
Print(“i is ” + i); //prints i to the console

The other important thing to do with comments is to write an intro to your code. Even if it's just a simple functi on
then a litt le header that explains what's going on will be really useful.

// this is a function to do really cool stuff ← what the functi on does
// Ben Doherty 02 05 08 Version 1.0 ← who you are
// beware of the cracks in the pavement ←know problems

you can put more stuff in the header, but just this basic stuff will be really useful to you/ others in the future.

Writi ng code is no diff erent from writi ng prose, each
person develops their own style, and way of doing
things, so the things that I'm suggesti ng below are
really just pointers to make your life easier, and make
your code more readable, and therefore more easily
understood.

If you've done the 'scribble by functi on' tutorial then a
lot of these ideas will be familiar, but this will try and
explain them in a bit more detail.

The black box

This isn't the sort of black box that aeroplanes have that reveal the last words
of a pilot.

“I wonder if my alti meter is working, it shouldn't say 5 meters...
..my my that cow looks big...
..ouch!”

It's the idea that a functi on is a mysterious thing that you
don't need to know how it works inside, just what it does
as seen from the outside.

This means that as long as you don't change the inputs
or outputs of a functi on then you can ti nker with it's

insides as much as you like and it'll sti ll work fi ne in
your model. The advantage of that is that if you mash
together something that just about works to hit a
deadline, then you can come back to it and make it
elegant and bombproof later without changing any of
the rest of the model.

arguments result

The other implicati on of this is that because the functi on
lives inside the black box, it can't see out, which means
that you should make sure that informati on only passes
in through the argument list and out through the return
statement.

This seems a bit restricti ve, and ti me consuming, but
it will stop you getti ng your fi ngers burnt later, and it
will improve the reusability of the code. (reusability
means less work for you in the future, and less work in
the future means more ti me to spend baking cakes and
drinking tea)

An example of this is when we need to draw a load of
lines that sti ck straight up. It's really tempti ng to call
the baseCS directly from within the functi on. GC won't
complain, because all top level features are available
globally (see the scope tutorial) but if you decide that

you want them all to ti p over you'd need
to go in and edit the functi on to make it
happen rather than just editi ng the
arguments list.
This doesn't sound too
bad, but if you have loads
of variables called globally
then you are in for a big
disaster sooner or later.
The other big disadvantage of
calling things globally rather than
through the arguments list is that
the symbolic graph doesn't update,
so you can't visualise the logic
of your model. Which is about
as cool as wearing 80's neon
spandex ti ghts to a Metalica
concert.

er you'd need
n to make it
ti ng the

of
r than
s that
update,
gic
out
n

Indenti ng

I'm not really a ti dy freak, anyone who knows me can tell
you that, but nobody wants to have to go to more eff ort
than necessary to read code. Keeping it ti dy makes it
much easier to read.

In normal writi ng there are devices for making the text
meaningful without actually reading it. You can roughly
work out what's going on by looking at the paragraphs
and the headings and seeing the structure of the
document. (screw up your eyes and look at this page.)

It's no diff erent with code. The main thing that comes in
handy is indenti ng.

In general, whenever you pass the opening brace of a
functi on, loop, conditi onal statement etc. you should
move inwards by one tab stop (roughly 4 spaces).

As the pair of braces defi nes a structural thing (in terms
of meaning, not making things stand up), it makes sense
that everything inside that structural block is equally
important. If you keep nesti ng the brace sets then the
contents keeps moving to the right and therefore you
can see the structure of the program without ever even
reading the code.
This makes holding the whole program in your head
much simpler and avoids unnecessary faffi ng about.

function (CoordinateSystem CS, int fingers)
{

string base = "hello ";
for (int i = 0; i < fingers; i++)

 {
for (int j = 0; j < fingers; j++)

 {
if (Odd(i))

 {
 Print(base+i);

else
 {

for (int k = 0; k < fingers; k++)
 {
 Print(k + "green bottles");

 }
 }
 }
 }
}

function (CoordinateSystem CS, int fingers)
{

string base = "hello ";
for (int i = 0; i < fingers; i++)

 {
for (int j = 0; j < fingers; j++)

 {
if (Odd(i))

 {
 Print(base+i);

else
 {

for (int k = 0; k < fingers; k++)
 {
 Print(k + "green bottles");

 }
 }
 }
 }
}

With this example functi on, there are a series of indents
that correspond with structural elements of the code.
The functi on doesn’t do anything parti cularly useful, but
it does have lots of nesti ng!

If we draw a box around each structural element, then
we can see how they nest.

eventually you’ll get to the point where you can see
roughly what’s going on in a program without having to
look at the individual words.

