
generative
components
theoretical
frameworks
the stuff you need to know

grounding in space

Theoretical
geometry gives us
an infinite universe
to work in. There is
no concept of up, or
of where we are in a
finite sense.

To make this work
for us, we pick a
spot an call it the
‘origin’

The way of
describing space
that is most
common is the
Cartesian grid
({x,y,z} triples)

The positive part
of the Z axis can
be considered ‘up’
generally.

As we have 3 axis
and an origin that
defines 3 planes
that are all at 90
degrees to each
other.

(The Yellow line indicates the currently
active plane)

inputs

comfortable here?

..and here?

thought so!

so what about here?

they are pretty
much the same!

5

5+2

Sin(5)

(1/Sin(5))+90

dave

dave*2

nice and easy

still easy

getting scary

pretty frightening

eh? must be a variable

simple again

dave = 8

pretty much
anything can go into
this box

5

5+2

Sin(5)

(1/Sin(5))+90

dave

dave*2

nice and easy

still easy

getting scary

pretty frightening

eh? must be a variable

simple again

dave = 8

single values are
easy to understand

5

5+2

Sin(5)

(1/Sin(5))+90

dave

dave*2

nice and easy

still easy

getting scary

pretty frightening

eh? must be a variable

simple again

dave = 8very simple
equations are easy
too

5

5+2

Sin(5)

(1/Sin(5))+90

dave

dave*2

nice and easy

still easy

getting scary

pretty frightening

eh? must be a variable

simple again

dave = 8

scientific calculator
stuff can be found in
the function list

fx

5

5+2

Sin(5)

(1/Sin(5))+90

dave

dave*2

nice and easy

still easy

getting scary

pretty frightening

eh? must be a variable

simple again

dave = 8

compound
statements follow
BODMAS, no magic
here folks.

B		 Brackets first
O		 Orders (ie Powers and Square Roots, etc.)
DM	 Division and Multiplication (left-to-right)
AS		 Addition and Subtraction (left-to-right)

	 6 × (5 + 3)	 = 	6 × 8		 =	 48 

	 6 × (5 + 3)	 = 	 30 + 3	 =	 33	
	

	 6 × 5 + 3		 = 	 30 + 3	 =	 33	

5

5+2

Sin(5)

(1/Sin(5))+90

dave

dave*2

nice and easy

still easy

getting scary

pretty frightening

eh? must be a variable

simple again

dave = 8

5

5+2

Sin(5)

(1/Sin(5))+90

dave

dave*2

nice and easy

still easy

getting scary

pretty frightening

eh? must be a variable

simple again

dave = 8

once a variable is
defined (named) it
can be used in place
of a value

5

5+2

Sin(5)

(1/Sin(5))+90

dave

dave*2

nice and easy

still easy

getting scary

pretty frightening

eh? must be a variable

simple again

dave = 8

once a variable is
defined (named) it
can be used in place
of a value

This circle’s radius
is defined using a
single value.

That’s how you’d
expect it to work
from experience.

 5

This circle’s radius is
defined using a list.

Lists are really
where the power of
GC kicks in.

 {3, 4, 4.5, 5}

Type ‘Curly Braces’
to define a list.

Things in a list are
indexed from 0

 { , , , }

A B C D E F G

[0] [1] [2] [3] [4] [5] [6]

dave =

dave[4] = ‘E’

If we declare a
variable called
‘dave’ as a list
having the contents
{A,B,C,D,E,F}

we can refer to the
contents of that list
individually by their
index.

remember to count
indices from 0

A B C D E F G

[0] [1] [2] [3] [4] [5] [6]

dave =

dave[4] = ‘E’

If we declare a
variable called
‘dave’ as a list
having the contents
{A,B,C,D,E,F}

we can refer to the
contents of that list
individually by their
index.

remember to count
indices from 0

walking up
and down the
dimensional
ladder

having a read of
Edwin A. Abbott’s
Flatland will make all
this dimensionality
stuff much simpler
to understand.

I’d recommend the
annotated version.

points

points are 0
dimensional.

They have no size,
volume, nothing

If we have 2 points,
there is a line that
runs through them.

Strictly lines are
infinite, and line
segments are
bounded, but
common usage
means that we
refer to bounded
segments as lines.

arcs and circles
are bit more
complicated to
define.

..and so it begins...

the maths
behind splines is
beyond me, but
the geometric
description is
actually quite easy -
more on that later

3 points define a
plane.

Again, planes are
infinite.

surfaces are in the
class of 2d objects,
even though they
need to be in a 3d
space, but again,
more on that later

there are loads of
ways of making
solids, but they are
the only truly 3d
objects in GC, as
they have a volume.

That is not to say that the
rest of the things aren’t 3d,
it’s just a technical geometry
distinction. These sort of
things come up a lot.

we can step
back down the
dimensional ladder
again too

solids intersected
with a plane or
surface produce a
closed curve

surfaces intersected
with a plane or
surface produce an
open curve (usually)

curve curve
intersections
produce points.

be careful of the
extra point!
Circles are classic for
this problem.

types

how do you tell
what to put in each
box?

The type is the
biggest clue

inputName:type

so what’s a type?

data comes in
different flavours.

Computers are
picky, they only eat
what they feel like.

So a type is a kind, a
breed, a species, a
flavour of data.

the most common
types are coming up

int	 Counting numbers (0, 5, -4, 1000, -500)

double	 Real numbers(0.5, -7.8 ,15.0, 1598.5434)

boolean	 Answer to a logical question (true, false)

string	 Some text(“hello world”, “450”, “dave”)

IPoint	 GC’s special point

IDirection	 GC’s special part of a vector

ICurve	 CG’s own curve, includes lines, arcs, bsplines

ISurface	 CG’s own surface

ISolid 	 CG’s own Solids

User defined	 You can define your own types

int	 Counting numbers (0, 5, -4, 1000, -500)

double	 Real numbers(0.5, -7.8 ,15.0, 1598.5434)

boolean	 Answer to a logical question (true, false)

string	 Some text(“hello world”, “450”, “dave”)

IPoint	 GC’s special point

IDirection	 GC’s special part of a vector

ICurve	 CG’s own curve, includes lines, arcs, bsplines

ISurface	 CG’s own surface

ISolid 	 CG’s own Solids

User defined	 You can define your own types

int	 Counting numbers (0, 5, -4, 1000, -500)

double	 Real numbers(0.5, -7.8 ,15.0, 1598.5434)

boolean	 Answer to a logical question (true, false)

string	 Some text(“hello world”, “450”, “dave”)

IPoint	 GC’s special point

IDirection	 GC’s special part of a vector

ICurve	 CG’s own curve, includes lines, arcs, bsplines

ISurface	 CG’s own surface

ISolid 	 CG’s own Solids

User defined	 You can define your own types

int	 Counting numbers (0, 5, -4, 1000, -500)

double	 Real numbers(0.5, -7.8 ,15.0, 1598.5434)

boolean	 Answer to a logical question (true, false)

string	 Some text(“hello world”, “450”, “dave”)

IPoint	 GC’s special point

IDirection	 GC’s special part of a vector

ICurve	 CG’s own curve, includes lines, arcs, bsplines

ISurface	 CG’s own surface

ISolid 	 CG’s own Solids

User defined	 You can define your own types

int	 Counting numbers (0, 5, -4, 1000, -500)

double	 Real numbers(0.5, -7.8 ,15.0, 1598.5434)

boolean	 Answer to a logical question (true, false)

string	 Some text(“hello world”, “450”, “dave”)

IPoint	 GC’s special point

IDirection	 GC’s special part of a vector

ICurve	 CG’s own curve, includes lines, arcs, bsplines

ISurface	 CG’s own surface

ISolid 	 CG’s own Solids

User defined	 You can define your own types in C#

ge
ne

ri
c

ty
pe

s
G

C
sp

ec
ifi

c
ty

pe
s

you can sometimes stuff one thing into
another slot (casting) but the type is generally
a good hint as to what is required.

properties

object

properties

dot
operator

objects have properties

they can be values, or sub-objects

either way, they have a type								 Type

me.name = “Ben”	 									 string

me.leftLeg.foot.shoesize = 9.5			 double

me.rightLeg.foot.shoewidth = “wide”	 string

me.carDrivinglicence = false				 boolean

object		 property

 dot operator

relationships

generally we are
much less interested
in numeric
descriptions of
where things are,
and how big they
are.

We are just into
relationships

the coffee is
constrained in the
cup

in a normal cad
program, even if we
put the coffee in the
place that is inside
the cup, it’s just
numerically defined
as being there.

if we move the cup
then it’s still where
is started.

in a relational
system, when we
move the cup, the
coffee moves.

in a relational
system we build
relationships

and behaviours.

i.e. generals
	 	 not specifics

spaces

Cartesian space

Unless you are a
quantum physicist
or a theoretical
mathematician,
Cartesian 3 space is
all you’ll ever need
(almost)

If anyone ever points at a
building and tells you that
it is non-euclidean then
they are just plain wrong.

Parameter space

This is an embeded
space.

from within the line
the universe only
extends as far as the
end of the line.
so the space is 1
long, regardless of
its size externally.

this is the T value

1

T=0.3

1 1

the same is true for
surfaces, the surface
is always considered
to be a 1 by 1 square

instead of XYZ
coords
it is UVD coords

the easiest way to think about
how it deals with distortion
is to draw a grid on a balloon
and then blow it up & squidge
it about a bit. the grid changes
shape, but the relationships
stay the same.

¼

¼

¼

¼

This inconsistency
when viewed
from an external
viewpoint can cause
problems if you
aren’t ready for it.

T = 0.5 isn’t the
geometric centre,
it’s the parametric
centre.

parametric distances
between control
points are equal

there are also
cylindrical coordinate
systems and
spherical coordinate
systems to play
about with.

These are handy
for cylindrical and
spherical things, but
also for survey data.

multiple spaces

by using a parallel
representations of
your geometry it’s
possible to build
control rigs, analysis
dashboards etc.

x

x

spline geometry

3

2

4
5

Splines are very ‘cool’, but
they aren’t very constructible
because contractors and
manufacturers are a bit scared
of them.

They were developed
independently by a pair of
French automotive engineers
– Pierre Étienne Bézier at
Renault and Paul de Casteljau
at Citroën – working on early
CAD systems back in the 1960s

They take some understanding
to do them right!

linear
order = 2

quadratic
order = 3

cubic
order = 4

quartic
order = 5

The order of a spline
refers to how many
control points each
segment looks to for
it’s shape.
An order 2 spline is a
straight line.

These diagrams
explain the
construction of
spline curves.

3

2

4
5

The third order
spline is tangent to
all of the segments
of the control frame.

4th and 5th are less
easy to visualise
their construction.

unambiguous
selection

oh, manipulate
me!!

clicking here is
ambiguous

Computers don’t like
ambiguity
computer says “no”, or
more likely “whatever”

z
ax

is
x axis

y
ax

is

zy
 p

la
ne

zx plane

xy
 p

la
ne

making selections in
the least ambiguous
position will make
your like much
simpler.

generally the less
crowded a place is,
the better it is as a
position to select.

recommended
reading

GC workspace

Toolbox

lots of your
interaction will be
in here

file operations
new features•	
editing•	
transactions•	
variables•	

Symbolic view

displays the
relationships
between
features

allows easy
editing

Model view

displays geometric output
and allows you to edit
features.

The tool box has
everything you
need to open and
save files, and a lot
of useful tools for
editing your models.

The new feature
box is where you
will make all your
new objects in your
model.

The transaction
player saves the
current state of the
model. This allows
you to explain the
design process in an
incremental way.

The normal
Microstation menus
hide in here

The symbolic
view shows how
the relationships
between the
features (both
geometric and
information based)
work.

It allows you to
show hidden parts,
and to edit hard to
reach features.

The default/model
view shows you all
the geometry.
This is the most
impressive bit
visually, but isn’t
always the best
place to be working
as it can get very
busy.

View 1 - Top, Default

1 Rotate View
2 Top View
3 Front View
4 Isometric View
5 Left View

Open As ToolBox

press and hold
for display styles

�t view to
extents

pan

files

// Bentley GenerativeComponents Transaction File -- File structure version 1.03.
(Please do not delete or change this line.)

environment
{
 GCVersion = “08.09.05.50”;
 MSVersion = “08.09.04.51”;
 MSProject = “GC_Default”;
 MSDesignFile = “C:\\Documents and Settings\\Ben\\Local Set-
tings\\Application Data\\Bentley\\MicroStation\\8.9\\s0_tIuz1-SOIbXHdlUtOuQ\\GC\\
workdgn\\$gcworkdgn.tmp”;
}

transaction modelBased “Add bsplineCurve01, point01, point02, point03, point04,
point05, point06”
{
 feature bsplineCurve01 GC.BSplineCurve
 {
 Poles = {point01,point02,point03,point04,point05,point06};
 Order = {3,4,5};
 SymbolXY = {100, 102};
 SymbolicModelDisplay = null;
 Color = {3,4,5};
 ConstructionsVisible = true;
 FillColor = -1;
 Free = true;
 IsConstruction = true;
 Level = 0;
 LevelName = “Default”;
 LineStyle = 0;
 LineStyleName = “0”;
 LineWeight = 0;
 MaximumReplication = true;
 PartFamilyName = null;
 PartName = null;
 RoleInExampleGraph = null;
 Transparency = 0.0;
 }
 feature point01 GC.Point
 {
 CoordinateSystem = baseCS;
 XTranslation = <free> (-5.87900647249192);
 YTranslation = <free> (7.77042858980672);
 ZTranslation = <free> (0.0);
 HandlesVisible = true;
 Visible = false;
 }

 feature point02 GC.Point
 {
 CoordinateSystem = baseCS;
 XTranslation = <free> (-2.89228802588997);
 YTranslation = <free> (1.97318303987809);
 ZTranslation = <free> (0.0);
 HandlesVisible = true;
 Visible = false;
 }
 feature point03 GC.Point
 {
 CoordinateSystem = baseCS;
 XTranslation = <free> (1.01679935275081);
 YTranslation = <free> (8.3852879663143);
 ZTranslation = <free> (0.0);
 HandlesVisible = true;
 Visible = false;
 }
 feature point04 GC.Point
 {
 CoordinateSystem = baseCS;
 XTranslation = <free> (4.70627508090615);
 YTranslation = <free> (1.4461607171573);
 ZTranslation = <free> (0.0);
 HandlesVisible = true;
 Visible = false;
 }
 feature point05 GC.Point
 {
 CoordinateSystem = baseCS;
 XTranslation = <free> (10.4161779935275);
 YTranslation = <free> (8.60488060078129);
 ZTranslation = <free> (0.0);
 HandlesVisible = true;
 Visible = false;
 }
 feature point06 GC.Point
 {
 CoordinateSystem = baseCS;
 XTranslation = <free> (2.05446440129452);
 YTranslation = <free> (17.6740564042681);
 ZTranslation = <free> (0.0);
 HandlesVisible = true;
 Visible = false;
 }
}

3

2

4
5

This is the entire file
for generating these
splines.

