
singular test area

singular test area

The test world.
Usually while we are using GC we have pretty complicated ideas. 
‘I’d like to make a component that will be applies to 30 000 polygons, and react to 
5 different possible input conditions in a totally smooth way’ 
At best that’d be a brave thing to jump right into, usually, it’d be prohibitively 
confusing. The best thing to do is to make a test world that isolates the component 
and allows us to put it through its paces in a nice uncluttered way.

Without being explicitly aware of it, just making a component on a polygon that 
you are then going to applying to a grid of polygons is a test world. It tests to see if 
the component works or not, which is a pretty big thing really.

If our component is a bit more complicated, and has features that react to a few 
inputs in different ways then we need to be able to model these different inputs in 
the test world too.

Initially this seems just like making the process of building a component just sound 
a bit complicated, but it’s what happens next that’s the interesting bit.

Now we try and break the component!! Or at least 
make it behave in a way that we consider 
‘wrong’

I’ve included a simple 
component that does a 
load of stuff depending 
on its relationship to 
a few points, and 
it’s orientation on 
a surface. At the 
moment you don’t 
need to be too 
concerned about 
how the internals 
of the component 

actually work, just that it does (although there are some fun tricks in there that 
you might fi nd useful if you dig around a bit).

When I’m testing I use two levels of application. The base level where it’s just one 
polygon, and then I wiggle the points that control the corners about, and play with 
the variables and see if it works in all situations. Then I use the tree under a roof 
example fi le, which I keep specially for testing (it’s included as a simplifi ed testing 
fi le) to see how the component proliferates

I made an error when I was making the component the fi rst time, but I left it in so 
you could see what it did, and how I fi xed it. It comes from the fact that I drew my 
polygon anti clockwise when I made 
it, but vert grids draw them 
clockwise, and therefore the 
right hand rule means that 
the coordinate system 
pointed the wrong 
way.

Of course test 
rigs are useful in 
more cases that 
just for prototyping 
components. 
Components are just a 
convenient illustration. 
You can use this theory to test 
scripts with sample data, or just 
models.
The other issue is that you can set up a situation in a test that makes your model do 
something that it’d never be asked to do in real use. If it breaks at this point you 
get two options, ignore it because it’ll never get to that position, or fi x it because 
you might want to reuse that function/component/model in the future. As long as 
you aren’t under fi erce time pressure, the latter is always the better option.


